## CST Huygens Box Tutorial

Ling Zhang (lzd76@mst.edu)

Missouri University of Science and Technology, Rolla, MO

Last update: 12/16/2019

## Objective

A simple tutorial of how to use Huygens-box source in CST, including:

 How to create a near field source and export the source file
 How to edit the source file and import it into CST model

## FSM File (from CST Help)

#### FSM nearfield source

FSM nearfield sources can be recorded by the time domain solver, the tetrahedral frequency domain solver, and the integral equation solver of CST MICROWAVE STUDIO by defining a field source monitor. The resulting FSM nearfield source files can be found in the results folder of the original project. The FSM nearfield sources can be imprinted in the CST MICROWAVE STUDIO time domain solver, integral equation solver, and asymptotic solver.



However, FSM file cannot be edited. Instead, it can only be exported from and imported into CST models.

## NFS File (from CST Help)

#### NFS nearfield scan data exchange format

The NFS file format allows the imprint of equivalent surface fields on a box or even on single planes. This format is especially designed for scan data and is able to handle an equidistant as well as a non-equidistant sampled spatial distribution of field data. This format can be imprinted in the CST MICROWAVE STUDIO time domain solver, integral equation solver, and asymptotic solver. The format is based on the IEC® Technical Report IEC/TR 61967-1-1. In order to describe surface fields on a rectangular box surface, each face and field component has to be defined in a single XML-file and a corresponding DAT-file.

The XML-file contains all meta-data such as field type, field components (Ex, Ey,Ez, Hx, Hy, Hz ), frequencies, and a reference to the DAT-file. The DAT-file contains the actual field data values in the following ASCII pattern:

```
x0 y0 z0 Re(freq1) Im(freq1) Re(freq2) Im(freq2) Re(freq3) Im(freq3) ...
x1 y0 z0 Re(freq1) Im(freq1) Re(freq2) Im(freq2) Re(freq3) Im(freq3) ...
x0 y1 z0 Re(freq1) Im(freq1) Re(freq2) Im(freq2) Re(freq3) Im(freq3) ...
...
```

Where (x\_i, y\_j, z\_k) describe point positions of a cartesian grid and Re (freq1) /Im (freq1) the real/imaginary part of the field value at frequency freq1 and position (x\_i, y\_j, z\_k).

Note: In order to create a supported import file: the arbitrary positions must shape an axis aligned bounding box which is approximately a flat sheet. Additionally, there should be no duplicate points.

Note: When describing a box using multiple planes, be aware that the plane normal vector is always assumed to point to the positive coordinate axis direction on all box planes. Change the phase of the data on the lower box planes to account for the change of the normal orientation.

Note: While field strength values given in V/m or A/m are interpreted as peak values, data given in logarithmic scale are interpreted as rms. E.g. an electric field strength with peak value x is converted to logarithmic scale according to:

xdb = 20 \* log( (x/sqr(2)) / (V/m) ) dBV/m

Example files for the supported types of the NFS format can be found here.

A detailed description of the file syntax can be found in IEC® Technical Report IEC/TR 61967-1-1.



• FSM file can be converted to NFS file (including xml and dat file), and NFS file can be then edited.

## Convert FSM File to NFS File (from CST Help)

FSM export as NFS nearfield scan data exchange format

In order to export data of a field source monitor from a time domain simulation, it is necessary to convert an existing FSM file into the desired NFS nearfield scan data exchange format. This can be achieved in two ways with a VBA command:

1. Directly by absolute path to an existing FSM file:

```
'creates a folder "c:\dummy\my_monitor_file\" in the parent folder of an existing FSM file with a set of NFS files.
With Monitor
   .Reset
   .Export ("nfs" ,"" ,"c:\dummy\my_monitor_file.fsm", True)
End With
```

2. Indirectly by the name of the field source monitor and the excitation name used:

Convert FSM to NFS file through VBA command

'creates an additional folder in the result folder of the current project with an existing FSM file: "\$PROJECT\_RESULT\_FOLDER\$\\$FIELD\_SOURCE\_MONITOR\_NAME\$\_\$EXCITATION\_NAME\$\".
'E.g. "c:\project\_1\Result\field-source (f=4..6(3))\_5\": where \$FIELD\_SOURCE\_MONITOR\_NAME\$ is "field-source (f=4..6(3))", \$EXCITATION\_NAME\$ is "5" if port "5" was excited and
\$PROJECT\_RESULT\_FOLDER\$ is "c:\project\_1\Result".

```
'This folder will contain a set of NFS files.
With Monitor
   .Reset
   .Name ("field-source (f=4..6(3))")
   .Export ("nfs" ,"5" ,"", True)
End With
```

'In case of a simultaneous excitation the excitation name is exactly the string in the "Label" field of the Excitation Selection Dialog. E.g. "2[1.0,0.0]+3[1.0,0.0]"
With Monitor
 .Reset
 .Name ("field-source (f=4..6(3))")
 .Export ("nfs", "2[1.0,0.0]+3[1.0,0.0]", "", True)

End With

## An Example of Using Huygens Box in CST

Field Source Monitor **Choose Field** 



Create a new field monitor

A subvolume box can be defined. Then the source file will include the field on the outer surface of the box



| Dnitor<br>Choose Field<br>source                                         | Type<br>O E-Field<br>O H-Field and Surface current<br>O Farfield/RCS<br>I Field source                                                                                                                                                             | <ul> <li>Surface current (TLM only)</li> <li>Power flow</li> <li>Current density</li> <li>Power loss density/SAR</li> <li>Electric energy density</li> <li>Magnetic energy density</li> </ul> | OK<br>Cancel<br>Apply<br>Preview<br>Help |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Define frequency<br>of interest                                          | Name: field-source (f=3) Specification  Frequency Frequency                                                                                                                                                                                        | ☐ Automatic<br>Time<br>3                                                                                                                                                                      |                                          |
| ume box can be<br>Then the source<br>nclude the field<br>uter surface of | Frequency minimum:<br>Frequency maximum:<br>Structure Subvolume<br>Coordinates:<br>Structure bounding box<br>X Min: 0 + 10<br>Y Min: 0 + 10<br>Z Min: 0 + 10<br>Use same offset in all direction<br>Inflate volume with offset<br>Replace exterior | 0.0     6     Offset type:     Fraction of wavelength     X Max:     190     Y Max:     164     10     Z Max:     8     -     10     ns     At frequency:     3                               |                                          |

Monitor

 $\times$ 

## FSM File

#### After simulation is done, there will be a FSM file in the 'Result' folder

| 📄 e-field (f=2.45)_8,1_m3d.coe | 7/4/2019 12:21 PM | COE File         | 935 KB   |
|--------------------------------|-------------------|------------------|----------|
| e-field (f=2.45)_8,1_m3d.rex   | 7/4/2019 12:21 PM | REX File         | 22 KB    |
| Eps .                          | 7/4/2019 12:07 PM | Microsoft Access | 3,422 KB |
| field-source (f=2.45)_8.fsm    | 7/4/2019 12:17 PM | FSM File         | 953 KB   |
| fs1_e-field.cdd                | 7/4/2019 12:06 PM | CDD File         | 1 KB     |
| 📄 fs1_h-field.cdd              | 7/4/2019 12:06 PM | CDD File         | 1 KB     |
| fr? e-field cdd                | 7///2010 12:06 DM | CDD File         | 1 KR     |

#### The FSM file can be directly imported into CST through 'Field Sources':



Select the FSM file

With Monitor .Reset

## Convert FSM to NFS File

.Export ("nfs" ,"" ,"c:\dummy\my\_monitor\_file.fsm", True)

End With

| rs •<br>Type •<br>on | Macros                |
|----------------------|-----------------------|
|                      | Run Macro             |
|                      | Calculate •           |
|                      | Construct             |
|                      | File 🕨                |
|                      | Matching Circuits     |
|                      | Materials •           |
|                      | Parameters •          |
| _                    | Report and Graphics   |
|                      | Results •             |
|                      | Solver •              |
| 7                    | Wizard 🕨              |
| 5                    | Edit Macro            |
| •                    | Open VBA Macro Editor |
|                      | Make VBA Macro        |
|                      | Import VBA Macro      |

| yg<br>ace | Ost-Processing     View     Macro Edit       Run     Pause     End     Image: Step     Step       Start Macro     Start Macro     Image: Step     Step | itor<br>{                | Toggle<br>Breakpoint • | Quick Cla<br>Watch +<br>how Data | lose Macro<br>Editor<br>Close |                 |                        |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|----------------------------------|-------------------------------|-----------------|------------------------|
| ×         | simple_heatsink_model_4_increa                                                                                                                         | ise_mesh_screws_CPU_v2 🔀 |                        |                                  |                               |                 |                        |
|           | Object: (General)                                                                                                                                      |                          |                        |                                  | 、<br>、                        | Proc: Main      |                        |
|           | '#Language "WWB-COM"                                                                                                                                   |                          |                        |                                  |                               |                 |                        |
|           | Option Explicit                                                                                                                                        |                          |                        |                                  |                               |                 |                        |
|           |                                                                                                                                                        |                          |                        |                                  |                               |                 |                        |
|           | Sub Main<br>With Monitor<br>.Reset                                                                                                                     | The addre                | ess of th              | e FSM                            | l file                        |                 |                        |
|           | Sub Main<br>With Monitor<br>.Reset<br>.Export ("nfs",""                                                                                                | The addre                | ess of th              | e FSM                            | I file                        | es\field-source | (f=2.45)_8.fsm', True) |
|           | Sub Main<br>With Monitor<br>.Reset<br>.Export ("nfs" ,""<br>End With                                                                                   | The addre                | ess of th              | e FSM                            | I file                        | es\field-source | (f=2.45)_8.fsm', True) |

Input VBA commands and run

Open VBA Macro Editor to convert FSM to NFS file

## NFS File

#### There will be a folder in the same folder with the FSM file

| Na | me                          |    |
|----|-----------------------------|----|
|    | field-source (f=2.45)_8     |    |
|    | field-source (f=2.45)_8.fsr | 'n |

| lype        |
|-------------|
| File folder |
| FSM File    |
|             |



Size

953 KB

| 📋 data_Ex_yr | nin.dat |     |
|--------------|---------|-----|
| data_Ex_zr   | nax.dat |     |
| 🗋 data_Ex_zr | nin.dat |     |
| data_Ey_xr   | nax.dat |     |
| data_Ey_xr   | nin.dat |     |
| data_Ey_zr   | nax.dat |     |
| data_Ey_zr   | nin.dat |     |
| data_Ez_xn   | nax.dat |     |
| data_Ez_xn   | nin.dat |     |
| data_Ez_yr   | nax.dat |     |
| data_Ez_yr   | nin.dat | DAT |
| data_Hx_y    | max.dat |     |
| data_Hx_y    | min.dat |     |
| data_Hx_z    | max.dat |     |
| data_Hx_z    | min.dat |     |
| 🖞 data_Hy_x  | max.dat |     |
| data_Hy_x    | min.dat |     |
| data_Hy_z    | max.dat |     |
| data_Hy_z    | min.dat |     |
| data_Hz_x    | max.dat |     |
| data_Hz_x    | min.dat |     |
| data_Hz_y    | max.dat |     |
| data_Hz_y    | min.dat |     |
| 🖹 Ex_ymax    |         |     |
| 🖹 Ex_ymin    |         |     |
| 🖹 Ex_zmax    |         | ХИЛ |
| 🖹 Ex_zmin    |         |     |
| 🖹 Ey_xmax    |         |     |
| 🖹 Ey_xmin    |         |     |
| 🖹 Ey_zmax    |         |     |

data\_Ex\_ymax.dat

|             | 11/20/2019 10:46 | DAT File     | 277 KB |
|-------------|------------------|--------------|--------|
|             | 11/20/2019 10:46 | DAT File     | 275 KB |
|             | 11/20/2019 10:46 | DAT File     | 528 KB |
|             | 11/20/2019 10:46 | DAT File     | 528 KB |
|             | 11/20/2019 10:46 | DAT File     | 141 KB |
|             | 11/20/2019 10:46 | DAT File     | 141 KB |
|             | 11/20/2019 10:46 | DAT File     | 528 KB |
|             | 11/20/2019 10:46 | DAT File     | 528 KB |
|             | 11/20/2019 10:46 | DAT File     | 128 KB |
|             | 11/20/2019 10:46 | DAT File     | 128 KB |
| <b>c</b> •• | 11/20/2019 10:46 | DAT File     | 250 KB |
| tile        | 11/20/2019 10:46 | DAT File     | 244 KB |
|             | 11/20/2019 10:46 | DAT File     | 283 KB |
|             | 11/20/2019 10:46 | DAT File     | 285 KB |
|             | 11/20/2019 10:46 | DAT File     | 834 KB |
|             | 11/20/2019 10:46 | DAT File     | 858 KB |
|             | 11/20/2019 10:46 | DAT File     | 141 KB |
|             | 11/20/2019 10:46 | DAT File     | 147 KB |
|             | 11/20/2019 10:46 | DAT File     | 822 KB |
|             | 11/20/2019 10:46 | DAT File     | 855 KB |
|             | 11/20/2019 10:46 | DAT File     | 145 KB |
|             | 11/20/2019 10:46 | DAT File     | 145 KB |
|             | 11/20/2019 10:46 | DAT File     | 280 KB |
|             | 11/20/2019 10:46 | DAT File     | 280 KB |
|             | 11/20/2019 10:46 | XML Document | 6 KB   |
|             | 11/20/2019 10:46 | XML Document | 6 KB   |
| l fil       | 11/20/2019 10:46 | XML Document | 7 KB   |
|             | 11/20/2019 10:46 | XML Document | 7 KB   |
|             | 11/20/2019 10:46 | XML Document | 4 KB   |
|             | 11/20/2019 10:46 | XML Document | 4 KB   |
|             | 11/20/2019 10:46 | XML Document | 7 KB   |

## DAT File



#### XMI File XML file can be edited <?xml version="1.0"?> < EmissionScan> <Nfs ver>1</Nfs ver>

<Filename>Ex\_ymax.xml</Filename>

<Date>November 20, 2019</Date>

<File\_ver>1</File\_ver>

#### Coordination information. Must match with the corresponding DAT file



</Measurement> </Data>

<Data\_files>data\_Ex\_ymax.dat </Data\_files>

</EmissionScan>

## Import XML File



| Field Source        |   |          |
|---------------------|---|----------|
| Name:               |   | <br>OK   |
| Import file:        |   | Cancel   |
| Use relative nath   |   | <br>Help |
| Use local copy only | 2 |          |

The XML files can be imported as field source



Field distribution can also be viewed

The XML and DAT file can be edited. Therefore, measured field can also be imported into CST through this way.

# An Example of Using Huygens Box in CST with multiple frequency points

## XML File – Multiple Frequency Points

<?xml version="1.0"?> EmissionScan> <Nfs ver>1</Nfs ver> <Filename>Ez\_ymin.xml</Filename> <File\_ver>1</File\_ver> <Date>December 14, 2019</Date> <Source>Generated by CST MICROWAVE STUDIO</Source> <cst:box xmlns:cst="http://www.cst.com/2014/export/nfs/20140228"> - <cst:face position="min" direction="y" type="cartesian"> <cst:gridlines axis="z">0.001 0.0014187027388316339 0.0018374054776632684 0.0022492866726876197 0.0023519260225450416 0.0024523864844580778 0.0025528469463711122 0.0026533074082841475 0.002753767870197182 0.0028542283321102177 0.002954688794023253 0.0030551492559362891 0.0031556097178493249 0.003256070179762358 0.0033565306416753942 0.0034569911035884295 0.0035574515655014643 0.0036579120274144996 0.0037583724893275358 0.0038810447376232148 0.0040032966020513748 0.0041037570639644097 0.0042042175258774454 0.0043046779877904812 0.004405138449703516 0.045931976344540722 0.046423473387608362 0.046914970430676009 0.047406467473743656 0.04789796451681131 0.048389461559878902 0.048880958602946299 0.049737472446262886 0.050720515859187437 0.051703559272111732 0.052686602685036034 0.053669646097960329 0.054652689510884631 0.055946507217103252 0.057424086977074122 0.058901666737044986 0.060464315137396203 0.062041012586476756 0.063546589907619605 0.065024169667590476 0.065796914887555444 0.065902691531455837 0.066000792172919986 0.066098892814384122 0.066196993455848258 0.066295094097312379 0.066393194738776529 0.066491295380240678 0.066589396021704814 0.066687496663168949 0.066785627832721225 0.066883923295547987 0.066982218758374762 0.067080514221201523 0.067178809684028284 0.067275476140638973 0.067367628079241806 0.067459780017844653 0.067551931956447486 0.067644083895050333 0.067736235833653166 0.067828387772256027 0.06792053971085886 0.068012765194254685 0.06811063140551625 0.068209360716957254 0.068983406280483245 0.070399273344003102 0.071855386705149613 0.073357694547268329 0.075043498302700504 0.076573985408157047 0.078036913799933313 0.079493027161079852 0.079827269135629819 0.079927317524849856 0.0800253888048814 0.080123460084912917 0.080221531364944448 0.080319602644975993 0.080417673925007524 0.080515745205039041 0.080613816485070586 0.080711887765102103 0.08081004801557759 0.080908343478404351 0.081006638941231141 0.081104934404057916 0.081203229866884691 0.081301154845913243 0.081398717150794997 0.081496279455676723 0.081593841760558491 0.081691404065440218 0.081788966370321986 0.081886528675203699 0.081984090980085453 0.082081653284967193 0.082179215589848975 0.082493550685165631 0.083618988237726219 0.084780875397437852 0.085772692822713201 0.085970286429104883 0.086053449716129188 0.086122995498753477 0.086192500708966668 0.086262005893000371 0.086331511077034045 0.086401016261067692 0.086470521445101381 0.086540026629135069 0.08660953181316873 0.086679036997202419 0.08674854218123608 0.086818047365269754 0.086887552549303429 0.086957057733337104 0.087026562917370792 0.087096068101404397 0.08717109182639661 0.087241305079759274 0.087310810263792962 0.087380315447826623 0.087449820631860326 0.087519325815893986 0.087588830999927675 0.087658336183961363 0.087727841367995038 0.087798229669719119 0.08787457424694313 0.087959505541805122 0.088234579933085922 0.089086901008339076 0.090417676657735604 0.091748452307132133 0.093079227956527483 0.09449555957982636 0.096109663775274717 0.097723767970723061 0.099404387359835325 0.10130166943887389 0.10323423718257609 0.10516680492627828 0.10709937266998049 0.10903194041368269 0.1109295633531196 0.11262243277681291 0.11423634546702127 0.11569519257501935 0.11576478068109053 0.11583428586512422 0.11590379104915785 0.11597329623319157 0.11604280141722523 0.11611230660125892 0.11618181178529262 0.11625131696932628 0.11632082215335997 0.11639032733739361 0.11645983252142729 0.11652933770546099 0.11659884288949468 0.11666834807352834 0.11673785325756164 0.11680780781231836 0.11687801865588769 0.11694822949945705 0.11701844034302637 0.11708865118659573 0.11715886203016507 0.11722907287373439 0.11729872720985828 0.11736823239389194 0.11743931448760078 0.11752138098149752 0.11761943950981313 0.11771749803812873 0.117815555565664443 0.11791361509475989 0.11801167362307548 0.11810973215139108 0.11827604695470038 0.1189194857180315 0.12036646534138914 0.12183469355371648 0.12337444128601419 0.12491619574584374 0.12636317536920139 0.12781015499255896 0.12917346150753947 0.13015650492046529 0.13113954833339106 0.13212259174631683 0.13315216529802842 0.13462680441502312 0.13610144353201784 0.13757608264901255 0.13905072176600725 0.14052536088300194 0.1420000000000002 </cst:gridlines> </cst:face> </cst:box> <Probe> <Field>Ez</Field> </Probe> - <Data> <Coordinates>xvz</Coordinates> Define multiple frequencies < Frequencies: <List>240000000 242000000 244000000 246000000 248000000 250000000 </List> Froquoncios < Measurement> <Format>ri</Format> <Unit>V/m</Unit> <Data\_files>data\_Ez\_ymin.dat </Data\_files> </Measurement> </Data> </EmissionScan>

## DAT File – Multiple Frequencies



## Remember to **flip the phase** on xmin and ymin side

## Flip Phase on xmin and ymin





When importing source into CST using multiple planes, we can find that **the phase on xmin and ymin plane is flipped**, compared with the original phase distribution on Huygens box.

The reason is:

From CST help file:

When describing a box using multiple planes, be aware that the plane normal vector is always assumed to point to the positive coordinate axis direction on all box planes. **Change the phase of the data on the lower box planes to account for the change of the normal orientation.** 

#### So remember to flip the phase on xmin and ymin side when dealing with DAT files!!!